Moteur de recherche

 

Espace presse

Paris, 19 novembre 2012

Une avancée majeure en microélectronique : production de nano-rubans de graphène semi-conducteurs

Le graphène, cristal bidimensionnel composé d'une couche unique d'atomes de carbone, possède des propriétés très prometteuses pour l'électronique. Cependant, pour que ces applications potentielles se concrétisent, il était nécessaire d'obtenir une forme semi-conductrice de ce matériau. Huit ans après sa découverte, c'est chose faite, grâce aux travaux d'une équipe franco-américaine menée par le Georgia Institute of Technology (USA), et incluant des scientifiques du CNRS, du synchrotron SOLEIL, de l'Institut Jean Lamour (CNRS/Université de Lorraine, Nancy) et de l'Institut Néel (Grenoble). Les chercheurs sont parvenus à mettre au point une technique de production de bandes de graphène semi-conductrices basée sur le contrôle du substrat sur lequel se produit la croissance du graphène. Leurs résultats, publiés dans Nature Physics le 18 novembre 2012, ouvrent la voie à une électronique de très haute fréquence.

Le graphène se présente comme une monocouche d'atomes de carbone dont l'empilement constitue le graphite. De très nombreuses recherches sont menées depuis une dizaine d'années sur ce matériau. En effet, ses propriétés hors-normes, mobilités électroniques élevées, forte conductivité thermique, stabilité chimique et possibilité de moduler sa conductance électrique par un champ électrique, le rendent particulièrement attrayant pour l'électronique. En particulier, sa mobilité électronique, c'est-à-dire la vitesse à laquelle se déplacent les électrons en son sein, lui promettent des applications dans l'électronique de très haute fréquence, ou térahertz.

Mais voilà, sous sa forme naturelle, le graphène possède une structure métallique. Il est par conséquent conducteur de courant. Or, pour que ce matériau soit utilisable en microélectronique, il est nécessaire de l'obtenir sous une forme semi-conductrice. C'est ce que sont parvenus à obtenir les chercheurs de l'équipe franco-américaine.

En s'appuyant notamment sur les résultats de la ligne de lumière CASSIOPEE du synchrotron SOLEIL, les scientifiques sont parvenus à mettre au point une technique de production de bandes de graphène semi-conductrices. Basée sur le contrôle de la géométrie du substrat sur lequel a lieu la croissance du graphène, elle consiste à graver des nano-sillons sur une surface en carbure de silicium (SiC). Sur ce substrat, le graphène croît sous forme d'un ruban dont le bord, semi-conducteur, est lié à du graphène métallique. Cette bande semi-conductrice ne mesure que quelques nanomètres de largeur.

Cette technique permet non seulement de travailler à température ambiante, mais également d'obtenir une bande de graphène semi-conductrice cinq fois plus fine que le record détenu par IBM en lithographie. Par ailleurs, la production de graphène est considérée comme extrêmement coûteuse. Or, l'équipe franco-américaine est parvenue à produire des dizaines de milliers de ces rubans aux bords semi-conducteurs, ce qui rend envisageable leur production à l'échelle industrielle. Un pas de plus vers la fabrication de circuits intégrés à haute densité à base de carbone a bel et bien été franchi.  

graphene

© E.H. Conrad, A. Taleb-Ibrahimi.

Vue schématique, de côté, des rubans de graphène nanométriques qui croissent sur les facettes, contenant deux feuillets de graphène (le feuillet inférieur en rouge est appelé couche "tampon"). Les régions grises sont les parties incurvées du graphène qui sont semi-conductrices. Le schéma montre également l'orientation du détecteur (cylindres pointus au-dessus de la structure) pour obtenir les différentes données de photoémission montrées à gauche.





Références :

A wide band gap metal-semiconductor-metal nanostructure made entirely from Graphene
J. Hicks, A. Tejeda, A. Taleb-Ibrahimi, M.S. Nevius, F. Wang, K. Shepperd, J. Palmer, F. Bertran, P. Le Fèvre, J. Kunc, W.A. de Heer, C. Berger & E.H. Conrad
Nature Physics 10.1038/NPHYS2487, 18 novembre 2012.

Contacts :

Chercheurs
Ed Conrad l edward.conrad@physics.gatech.edu
Amina Taleb-Ibrahimi l T 01 69 35 96 18 l amina.taleb@synchrotron-soleil.fr

Presse CNRS l T 01 44 96 51 51 l presse@cnrs-dir.fr
Presse Soleil l Isabelle Quinkal l T 01 69 35 90 06 l isabelle.quinkal@synchrotron-soleil.fr


Haut de page

Derniers communiqués
Toutes disciplines confondues

Retour à l'accueilContactcreditsCom'Pratique