Moteur de recherche

 

Espace presse

Paris, 8 avril 2015

Bio-bitumes : des routes vertes à base de micro-algues ?

Les micro-algues constituent une source très prometteuse d'alternative au pétrole et ceci, sans concurrencer l'industrie alimentaire. Pour la première fois, elles ont été utilisées pour faire... du bitume ! Des chercheurs des laboratoires Chimie et interdisciplinarité : synthèse analyse modélisation (CNRS/Université de Nantes), Génie des procédés − environnement − agroalimentaire (CNRS/Université de Nantes/ONIRIS/Ecole des Mines de Nantes), Matériaux pour infrastructures de transports (Ifsttar), Conditions extrêmes et matériaux : haute température et irradiation (CNRS), en collaboration avec l'entreprise AlgoSource Technologies, ont apporté la preuve de concept de ce bio-bitume, dont les caractéristiques sont très proches du « vrai » bitume de nos routes. Leurs travaux sont publiés dans le numéro d'avril de la revue ACS Sustainable Chemistry & Engineering.

Les micro-algues sont connues depuis longtemps pour leurs applications comme colorants en cosmétique ou comme compléments alimentaires. Leur raffinage pour produire, par exemple, des biocarburants, est une idée qui a émergé ces dernières années. Aujourd'hui, les micro-algues font partie des alternatives prometteuses au pétrole. Avec le développement de procédés efficaces et rentables, de nombreux produits issus de l'industrie du raffinage deviendraient accessibles.

Dans le cadre du programme Algoroute, financé par la région Pays de la Loire, des chercheurs de laboratoires nantais et orléanais1 ont produit du bio-bitume en valorisant des résidus de micro-algues, issus par exemple de l'extraction de protéines hydrosolubles des algues pour l'industrie cosmétique. Ils ont utilisé un procédé de liquéfaction hydrothermale, plus simplement de l'eau sous pression (à l'état sous-critique) : celui-ci transforme ces déchets de micro-algues en une phase visqueuse noire hydrophobe (bio-bitume) ayant un aspect proche de celui d'un bitume pétrolier (voir la figure). Ce procédé est réalisé avec un rendement de conversion actuel de 55%.

Alors que la composition chimique du bio-bitume est complétement différente de celle du bitume issu du pétrole, ils présentent des similarités : la couleur noire et les propriétés rhéologiques2. Liquide au-dessus de 100°C, le bio-bitume permet d'enrober les agrégats minéraux ; viscoélastique de -20 °C à 60 °C, il assure la cohésion de la structure granulaire, supporte les charges et relaxe les contraintes mécaniques. Des analyses de tenue dans le temps ont débuté, ainsi que des études pour évaluer la rentabilité du procédé dans la perspective d'une production à grande échelle.

Cette innovation apporte une nouvelle option potentielle pour l'industrie routière, actuellement entièrement dépendante du pétrole. Jusqu'à présent, les bio-bitumes développés intégraient des huiles d'origine agricole (avec l'inconvénient d'entrer en compétition avec la nutrition humaine) ou issues de l'industrie papetière, mélangées à des résines pour améliorer leurs propriétés viscoélastiques. Utiliser des micro-algues, dont la culture ne nécessite pas la mobilisation de terres arables, présente donc une solution attractive.

biobitume

© les films du cercle rouge

Procédé de fabrication du bio-bitume à base de micro-algues.




Images disponibles à la photothèque du CNRS, phototheque@cnrs.fr.


Pour en savoir plus : une vidéo sur ce projet de recherche
(© Université de Nantes) :



Notes :

1 - Chimie et interdisciplinarité : synthèse analyse modélisation (CNRS/Université de Nantes)
- Laboratoire de génie des procédés − environnement − agroalimentaire (CNRS/Université de Nantes/ONIRIS/Ecole des Mines de Nantes)
- Matériaux pour infrastructures de transports (Ifsttar)
- Conditions extrêmes et matériaux : haute température et irradiation (CNRS)

2 La rhéologie est l'étude de la déformation et de l'écoulement de la matière sous l'effet d'une contrainte appliquée.

Références :

Subcritical Hydrothermal Liquefaction of Microalgae Residues as a Green Route to Alternative Road Binders, Mariane Audo, Maria Paraschiv, Clémence Queffélec, Isabelle Louvet, Julie Hémez, Franck Fayon, Olivier Lépine, Jack Legrand, Mohand Tazerout, Emmanuel Chailleux, Bruno Bujoli,
ACS Sustainable Chemistry & Engineering, volume 3, issue 4, p. 583–590.
DOI: 10.1021/acssuschemeng.5b00088. Consulter le site web

Contacts :

Chercheur CNRS l Bruno Bujoli l T 02 51 12 54 21 l bruno.bujoli@univ-nantes.fr
Presse CNRS l Véronique Etienne l T 01 44 96 51 37 l veronique.etienne@cnrs-dir.fr


Haut de page

Derniers communiqués
Toutes disciplines confondues

Retour à l'accueilContactcreditsCom'Pratique